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Is this a predictable
extreme event?
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A: Not necessarily so.
Perhaps the ensemble
forecast is strongly
biased toward high
wind speeds.
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Is this a predictable
extreme event?
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A: Not necessarily so.
Is there a strong
correlation between
F’ and O’, so that a
high forecast anomaly
indicates a high
observed anomaly?
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Is this a predictable
extreme event?

Wind speed (m/s)

P
ro

ba
bi

lit
y 

D
en

si
ty

Observed
climatology

Observed
given 
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A: Yes.
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Some proposed general
characteristics of predictability

• If extreme event is large in scale, or if it is driven by
large scales, or if there strong flow to sweep mesoscale
perturbations away from convective source region  
possible days of  predictability.

• Not driven by large scales  more classical Lorenz ‘69
predictability  hours of predictability.  Also, model
errors may be more pronounced, limiting predictive
ability.



Predictability vs. predictive ability

• Predictability:  the timescale at which a phenomenon can
be predicted with skill relative to climatology.  An innate
characteristic of the atmospheric environment and the
phenomenon.
– Commonly estimated from perfect-model twin

experiments (which are too optimistic).
• Predictive ability: the time span at which the modeling

system to make a skillful prediction of the event in
question.

• Time span of predictive ability < time span of predictability
due to model error.

6



7

 Example of possible extended mesoscale predictive ability:
SREF probability of “significant tornado”

48 hr SREF Forecast Valid 21 UTC 7 April 2006
Prob (MLCAPE > 1000 Jkg-1)

X

Prob (6 km Shear > 40 kt)

X

Prob (0-1 km SRH > 100 m2s-2)

X

Prob (MLLCL < 1000 m)

X

Prob (3h conv. Pcpn > 0.01 in)

Shaded Area Prob > 5%

Max 40%

(MLCAPE  = CAPE using lowest 100 hPa)
Example from David Bright, SPC, using Jun Du’s NCEP SREF system
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Example of possible extended mesoscale predictive ability:
SREF probability of “significant tornado”

36 hr SREF Forecast Valid 21 UTC 7 April 2006
Prob (MLCAPE > 1000 Jkg-1)

X

Prob (6 km Shear > 40 kt)

X

Prob (0-1 km SRH > 100 m2s-2)

X

Prob (MLLCL < 1000 m)

X

Prob (3h conv. Pcpn > 0.01 in)

Shaded Area Prob > 5%

Max 50%
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24 hr SREF Forecast Valid 21 UTC 7 April 2006
Prob (MLCAPE > 1000 Jkg-1)

X

Prob (6 km Shear > 40 kt)

X

Prob (0-1 km SRH > 100 m2s-2)

X

Prob (MLLCL < 1000 m)

X

Prob (3h conv. Pcpn > 0.01 in)

Shaded Area Prob > 5%

Max 50%

Example of possible extended mesoscale predictive ability:
SREF probability of “significant tornado”
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12 hr SREF Forecast Valid 21 UTC 7 April 2006
Prob (MLCAPE > 1000 Jkg-1)

X

Prob (6 km Shear > 40 kt)

X

Prob (0-1 km SRH > 100 m2s-2)

X

Prob (MLLCL < 1000 m)

X

Prob (3h conv. Pcpn > 0.01 in)

Shaded Area Prob > 5%

Max > 50%

Example of possible extended mesoscale predictive ability:
SREF probability of “significant tornado”

Tornadoes related to large-scale patterns of instability and shear, often predictable several days hence.
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Tornado outbreak of April 7, 2006
• First ever day-2 outlook “high risk” of severe weather issued by

NOAA Storm Prediction Center; in past have been cautious.
• Diagnostics from SREF and good past SREF performance aided

forecaster confidence
• > 800 total severe reports, 3 killer tornadoes,10 deaths
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Example of predicting extreme
event from ensemble’s large-

scale environment :
US fire-weather forecasting

• Ingredients from large-scale conditions:
– High wind speeds
– Hot temperatures
– Low relative humidity near surface
– Little rainfall
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SREF 500 hPa mean height, wind, temperature

Following plots courtesy of David Bright, NOAA/NCEP/SPC, using Jun Du’s NCEP SREF system
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SREF mean precipitation, vertical velocity, thickness

Over desert southwest US, little model forecast mean precipitation, and 
very warm conditions (purple is mean 5790 m 1000-500 hPa thickness).
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SREF Pr[P12I > .01”] and Mean P12I = .01” (dash)

Some members forecasting precipitation over Colorado,
New Mexico, but southern Utah and Arizona forecast dry.
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SREF Pr[RH < 15%] and Mean RH = 15% (dash)

very low near-surface relative humidity over Arizona, southern Utah
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SREF Pr[WSPD > 20 mph] and Mean WSPD = 20 mph (dash)

Many of the members are forecasting gusty winds.
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SREF Combined or Joint Probability

Pr [P12I < 0.01”] X
Pr [RH < 15%] X
Pr [WSPD > 20 mph] X
Pr [TMPF > 60F]

Joint probability of fire-weather ingredients.
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NOAA SPC Operational Outlook
(Uncertainty communicated in accompanying text)
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European example: “Lothar” storm, 1999

 

deterministic
forecast 
totally misses
damaging
storm over 
France; some
ensemble
members
forecast it
well.

from Tim Palmer’s
book chapter, 2006,
in “Predictability of
Weather and
Climate”.
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Dutch storm, 1 February 1953 ECMWF
reanalysis & reforecast

• Sea-level pressure
analyses and
Beaufort wind scales
shown. Prevalence of
strong onshore winds
for long period of time
led to catastrophic
flooding in the
Netherlands.

• 50 dykes burst almost
simultaneously, 1850
people killed, sea-
level rise not seen in
400-500 years
(estimated).

Ref: Jung et al.,
Meteor. Appl.,
2004 (part I).
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Dutch storm,
1 February 1953

ECMWF reanalysis &
reforecast

• 108-h forecast shown here.
Hints in a few members of
intense winds extending
toward the Dutch coast.

Ref: Jung et al., Meteor. Appl.,
2005 (part II).
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Dutch storm,
1 February 1953

ECMWF reanalysis &
reforecast

• 60-h forecast shown here.
Now there are many more
members with tight pressure
gradients extending toward
the Dutch coast.

Ref: Jung et al., Meteor. Appl.,
2005 (part II).
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Dutch storm,
1 February 1953

ECMWF reanalysis &
reforecast

• Probabilities from 51-
member ensemble
show, however, that only
by 36 h in this figure do
high probabilities of
strong gusts extend to
the Dutch coast.

• Predictive ability of this
storm was assessed by
authors as 48 h.

Ref: Jung et al., Meteor. Appl.,
2005 (part II).
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Hamburg storm, 17 February 1962

• Here, sea-level pressure and maximum wind gustiness.
• Hamburg, 70 km upstream of mouth of Elbe, flooded on storm surge.  340 killed.

Ref: Jung et al.,
Meteor. Appl.,
2004 (part I).
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Hamburg storm,
17 February 1962

ECMWF
reanalysis &
reforecast

• Probabilities from 51-member ensemble show that by 84 h a significant fraction of
members had gusts to the German coast, indicating the possibility of a storm surge up the
Elbe River.

• Predictive ability of this storm was assessed by authors as 84 h.
Ref: Jung et al., Meteor. Appl.,2005 (part II).
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Great October storm,
15-16 September 1987

• SE England, NW France; 20 lives lost, > $200,000,000 damage

Ref: Jung et al., Meteor. Appl., 2004 (part I).
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Great October
storm, 15-16

September 1987
reanalysis and

reforecast

• Indications of track
and intensity were
seen up to 96 h in
advance, according
to authors.

Ref: Jung et al., Meteor. Appl.,
2005 (part II).
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What about predictability of
extreme weather events from

small-scale features?
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Lorenz’s 1969 “Predictability of flow
possessing many scales of motion”

• Simple system with Ek proportional to k-5/3 in sub-synoptic scales
• Suppositions: small scales saturate quickly, errors spread upscale

much more quickly for smallest scales than for slightly larger scales.

• Implies finite time limit of predictability

Ref: Lorenz, 1969, Tellus, p. 303; Nastrom and Gage, JAS, 1985 for evidence of -5/3 power law in mesoscale.

spectrum
of background
flow

spectrum
of errors at
given lead

Ed Lorenz,
1918-2008
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Predictability theory, updated
Errors in small scales grow
very rapidly, until they
project on synoptic scales.
Thereafter, slower, more
modal growth. Mix of Lorenz
‘69 ideas and slower modal
growth.

…but this doesn’t
really provide intuition
about situations when
intense mesoscale
features are predictable
and when they are not.

Ref: Tribbia and Baumhefner, March 2004 MWR
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Understanding predictable and less predictable
intense precipitation events in the Alps

• Integration domains and topography (m) of the (a) 7- and (b)
2.2-km LM simulations.  Six-member ensemble in the interior
domain using shifting initialization times.  LBCs for larger
domain from ECMWF forecast.

Ref: Hohnegger et al., August 2006 MWR.
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Understanding predictable and less predictable
intense precipitation events in the Alps

Ref: Hohnegger et al., August 2006 MWR.

500-hPa initial conditions for 3 cases

IOP2a: 00 UTC 17 Sep 1999 IOP 2b: 00 UTC 20 Sep 1999 IOP3: 00 UTC 25 Sep 1999

• Data from Mesoscale Alpine Program (MAP),
Bougeault et al., BAMS, 2001.
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Understanding predictable and less predictable
intense precipitation events in the Alps

• Reasonable correspondence between model forecast and analyzed
precipitations.

Ref: Hohnegger et al., August 2006 MWR.

IOP2a: 00 UTC 17 Sep 1999 IOP 2b: 00 UTC 20 Sep 1999 IOP3: 00 UTC 25 Sep 1999
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Understanding predictable and less predictable
intense precipitation events in the Alps

• Normalized spread: IOP2a > IOP3 >> IOP2b.  Why?Ref: Hohnegger et al., August 2006 MWR

IOP2a: 00 UTC 17 Sep 1999 IOP 2b: 00 UTC 20 Sep 1999 IOP3: 00 UTC 25 Sep 1999

30-h accumulated
ensemble-mean
precipitation (mm)

30-h normalized
precipitation
spread

time series for
each member in
boxed regions
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Understanding predictable and less predictable
intense precipitation events in the Alps

• Temperature spread particularly small in
IOP2b’s  precipitation region.  Why?

Ref: Hohnegger et al., August 2006 MWR

IOP2a: 01 UTC 18 Sep 1999 IOP 2b: 07 UTC 20 Sep 1999 IOP3: 20 UTC 25 Sep 1999

1-h accumulated
ensemble-mean
precipitation (mm)

sfc-500 hPa
temperature
spread
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Understanding predictable and less predictable
intense precipitation events in the Alps

• IOP2b has plenty of moist instability relative to the other IOPs, so
instability is not the source of unpredictability.

Ref: Hohnegger et al., August 2006 MWR

IOP2a: 01 UTC 18 Sep 1999 IOP 2b: 07 UTC 20 Sep 1999 IOP3: 20 UTC 25 Sep 1999

Vertical minimum of the moist Brunt–Väisälä frequency N2
m (10－4 s－2) derived for

ensemble member 6. Cloud-free grid points are masked in white.
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Understanding predictable and less predictable
intense precipitation events in the Alps

• Perturbations related to internal gravity wave activity.

Ref: Hohnegger et al., August 2006 MWR

IOP2a: 01 UTC 18 Sep 1999 IOP 2b: 07 UTC 20 Sep 1999 IOP3: 20 UTC 25 Sep 1999

Temperature difference (K) between ensemble members 5 and 6 at a height of 13.6 km.
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Understanding predictable and less predictable
intense precipitation events in the Alps

Ref: Hohnegger et al., August 2006 MWR

where k and m are the vertical and
horizontal wavenumber, N2 is Brunt-
Väisälä frequency.  When windspeed is
less than critical, gravity waves can
propagate against mean flow and stay in
source region long enough to grow, else
they are swept out of growth region. Plot
shows that deep gravity waves have
higher critical speed threshold and can
propagate upstream under broader
range of conditions.

Consider propagation of gravity waves
in a dry airstream, uniform stratification
and windspeed.  Linear analysis as
in Holton text (2004, eq. 7.45a)

Theoretically derived critical wind speed Ucrit (m s－1) allowing 
upstream propagation of energy as a function of horizontal 
and vertical wavelengths and for N = 0.01 s－1 [see Eq. (4)]
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Understanding predictable and less predictable
intense precipitation events in the Alps

Ref: Hohnegger et al., August 2006 MWR

IOP2a: 01 UTC 18 Sep 1999 IOP 2b: 07 UTC 20 Sep 1999 IOP3: 20 UTC 25 Sep 1999

Ensemble mean of the horizontal wind velocity Uo (m s－1). Values larger than Ucrit inhibiting upstream energy propagation
are masked in white. Values for Uo and N have been averaged over half a vertical wavelength.

IOP2b’s winds above critical threshold, prohibiting local growth of perturbations from gravity-wave activity.

assumes
10-km 
vertical
wavelength

assumes
16-km 
vertical
wavelength
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Synthesizing Hohnegger et al.
• Mesoscale perturbations get stimulated in regions of

moist convection1.

• Perturbations may grow locally if they can remain in a
region of moist instability, reducing predictability.
High wind speeds tend to sweep the nascent
perturbations away from genesis region.2

• Reinforces hypothesis that mesoscale predictability is
lengthened when large-scale forcing is strong.

1 See also Zhang et al. 2003 JAS, Bei and Zhang, QJRMS, 2007.
2 See also Huerre and Monkewitz 1985 J. Fluid Mech, Snyder and Joly 1998 QJRMS, and 
literature on “local baroclinic instability” 
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Predictability of convective
precipitation without large-scale forcing

• Tropical simulation of
convection using grid point
model with periodic boundary
conditions, integrated to
statistical equilibrium.  Then
control and slightly perturbed
simulations are compared.

• Main points:
– Without large-scale external

forcing, small-scale convective
precipitation predictability lost
in ~ 6h, more consistent with
Lorenz 1969. Much faster than
baroclinic scales.

– Averaging over larger grid
areas results in enhanced
estimates of predictability.

Correlation between control and perturbed
rainfall field for 15-min. accumulations.

Ref: Islam et al., JAM, 1993.  See also Hohnegger and Schär, BAMS, Nov. 2007.
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Model error at mesoscale:
(1) errors from insufficient grid spacing

• George Bryan (NCAR) tested
convection in simple models
with grid spacings from 8 km to
125 m

Ref: http://www.mmm.ucar.edu/people/bryan/Presentations/bryan_2007_nssl_resolution.pdf
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4 km, 1 km, 0.25 km

• Across the squall line vertical
cross section for 25 ms-1

wind shear. Shading: mixing
ratio (g kg-1); contours
(vertical velocity (every 4 ms-

1).
• Dramatic changes in

structure of squall line,
updraft, positioning of cold
pool.

Ref: http://www.mmm.ucar.edu/people/bryan/Presentations/bryan_2007_nssl_resolution.pdf
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4 km,
1 km, 0.25 km

• Along the squall line
vertical cross section for
20 ms-1 wind shear.
Shading: mixing ratio (g
kg-1); contours (vertical
velocity (every 4 ms-1).

• Updrafts increase in
number and intensity
with increasing
resolution, decrease in
size.

Ref: http://www.mmm.ucar.edu/people/bryan/Presentations/bryan_2007_nssl_resolution.pdf
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4 km, 1 km, 0.25 km
• Plan view and N-S

integrated vertical cross
section for 25 ms-1 wind
shear. Shading: mixing
ratio (g kg-1); contours
(vertical velocity (every 4
ms-1).

• Here, 1 km and 4 km
differences aren’t as
noticeable.

Ref: http://www.mmm.ucar.edu/people/bryan/Presentations/bryan_2007_nssl_resolution.pdf
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4 km, 1 km, 0.25 km

• System propagation
approximately
converged at 1 km for
high-shear cases.

• For low-shear
environment (more
weakly forced)
resolutions above 1 km
are increasingly
inadequate.

Ref: http://www.mmm.ucar.edu/people/bryan/Presentations/bryan_2007_nssl_resolution.pdf
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Model errors at mesoscale:
(2) those darn parameterizations!

• Land-surface parameterization
• Boundary-layer parameterization
• Convective parameterization
• Microphysical parameterization
• etc.
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Model error at mesoscale:
Example: cloud microphysical processes

Conversion processes, like snow to
graupel conversion by riming, are very
difficult to parameterize but very important
in convective clouds.

Especially for snow and graupel the
particle properties like particle density
and fall speeds are important parameters.
The assumption of a constant particle
density is questionable.

Aggregation processes assume certain
collision and sticking efficiencies, which are
not well known.

Most schemes do not include hail processes
like wet growth, partial melting or shedding
(or only very simple parameterizations).

The so-called ice multiplication (or Hallet-Mossop
process) may be very important, but is still not well
understood

from Axel Seifert presentation to NCAR ASP summer colloquium
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Model error at mesoscale:
Summary of microphysical issues

in convection-resolving NWP
• Many fundamental problems in cloud microphysics are still unsolved.

• The lack of in-situ observations makes any progress very slow and difficult.

• Most of the current parameterization have been designed, operationally applied and tested for
stratiform precipitation only.

• Most of the empirical relations used in the parameterizations are based on surface observation or
measurements in stratiform cloud (or storm anvils, stratiform regions).

• Many basic parameterization assumptions, like N0=const., are at least questionable in convective
clouds.

• Many processes which are currently neglected, or not well represented, may become important in
deep convection (shedding, collisional breakup, ...).

• One-moment schemes might be insufficient to describe the variability of the size distributions in
convective clouds.

• Two-moment schemes haven‘t been used long enough to make any conclusions.

• Spectral methods are overwhelmingly complicated and computationally expensive. Nevertheless,
they suffer from our lack of understanding of the fundamental processes.

from Axel Seifert presentation to NCAR ASP summer colloquium
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Sensitivity of deep convective storms to graupel
properties in a microphysical parameterization

Ref: Gilmore et al., Nov 2004 MWR

Effect of assumed graupel density and particle
size distribution, i.e. size and fall speed, in a
storm split spawning supercells. Contours: rain
isohyets:  shading: hail/graupel depths greater
than .01, 0.1, 1, and 10 mm.  • : location of
maximum graupel accumulation.  × : location of
maximum hail accumulation.

Plausible changes in microphysical
parameterizations can cause large changes in
precipitation amount, type, and location.
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Synthesis
• If extreme events are driven by large scales

and for phenomena that are not particularly
sensitive to model error  days of
predictability.

• If extreme events are from mesoscale events
more divorced from large scales, or if related to
phenomena with large model errors  hours of
predictability.

• Model error large at mesoscale, can lead to
significant gap between predictive ability and
predictability.


